Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Undergraduate science, technology, engineering, and mathematics (STEM) students’ motivations have a strong influence on whether and how they will persist through challenging coursework and into STEM careers. Proper conceptualization and measurement of motivation constructs, such as students’ expectancies and per- ceptions of value and cost (i.e., expectancy value theory [EVT]) and their goals (i.e., achievement goal theory [AGT]), are necessary to understand and enhance STEM persistence and success. Research findings suggest the importance of exploring multiple measurement models for motivation constructs, including traditional con- firmatory factor analysis, exploratory structural equation models (ESEM), and bifactor models, but more research is needed to determine whether the same model fits best across time and context. As such, we mea- sured undergraduate biology students’ EVT and AGT motivations and investigated which measurement model best fit the data, and whether measurement invariance held, across three semesters. Having determined the best- fitting measurement model and type of invariance, we used scores from the best performing model to predict biology achievement. Measurement results indicated a bifactor-ESEM model had the best data-model fit for EVT and an ESEM model had the best data-model fit for AGT, with evidence of measurement invariance across semesters. Motivation factors, in particular attainment value and subjective task value, predicted small yet statistically significant amounts of variance in biology course outcomes each semester. Our findings provide support for using modern measurement models to capture students’ STEM motivations and potentially refine conceptualizations of them. Such future research will enhance educators’ ability to benevolently monitor and support students’ motivation, and enhance STEM performance and career success.more » « less
-
Well-designed instructional videos are powerful tools for helping students learn and prompting students to use generative strategies while learning from videos further bolsters their effectiveness. However, little is known about how individual differences in motivational factors, such as achievement goals, relate to how students learn within multimedia environments that include instructional videos and generative strategies. Therefore, in this study, we explored how achievement goals predicted undergraduate students’ behaviors when learning with instructional videos that required students to answer practice questions between videos, as well as how those activities predicted subsequent unit exam performance one week later. Additionally, we tested the best measurement models for modeling achievement goals between traditional confirmatory factor analysis and bifactor confirmatory factor analysis. The bifactor model fit our data best and was used for all subsequent analyses. Results indicated that stronger mastery goal endorsement predicted performance on the practice questions in the multimedia learning environment, which in turn positively predicted unit exam performance. In addition, students’ time spent watching videos positively predicted practice question performance. Taken together, this research emphasizes the availing role of adaptive motivations, like mastery goals, in learning from instructional videos that prompt the use of generative learning strategies.more » « less
An official website of the United States government
